JENSEN TYPE INEQUALITIES AND RADIAL NULL SETS

Catherine Banateau and Boris Korenblum

Abstract. We extend Jensen's formula to obtain an upper estimate of $\log jf(0)j$ for analytic functions in the unit disk **D** that are subject to a growth restriction. Suppose we have a closed subset E of the unit circle and f in addition is continuous in the union of the open disk and E. We obtain a formula that gives an upper estimate of of $\log jf(0)j$ in terms of the values of f on E and the so-called k-entropy of E. When the set E is taken to be the whole unit circle, we get the classical Jensen's inequality. Our formula is then applied to the study of radial null sets. 2000 Mathematics Subject Classi⁻cation: 30H05, 30E25, 46E15.

1 Growth Spaces

2 Two Problems

(A) Find good (upper and lower) estimates for the quantity

$$J(Z;k) = \sup f \log j f(0) j : f 2 UBA^{\langle k \rangle}; f j_Z = 0g$$

where $Z = fa_n g \% D$ is a given sequence.

(B) Find good estimates for

$$J(E;';k) = \sup f \log j f(0) j : f 2 UBA^{< k >} \setminus C(D[E); j f j j_E = 'g$$

where $E \not\!\!\!/_2 @ D$ is a closed set and ' is a non-negative continuous function on E:

Note that for k = 0; $(A^{<0>} = H^1)$ both problems have exact solutions:

$$J(Z;0) = \int_{n}^{\infty} \log \frac{1}{ja_{n}j}$$

$$J(E;';0) = \int_{E}^{Z} \log'(3) dm(3)$$

where dm is the normalized Lebesgue measure on @D: (Here, we assume k

and the radial projection of S:

$$PrS = f \frac{z}{jzj}$$
: $z \ 2 \ Sg$:

Then we have

$$J(Z;_{s}) \cdot \inf_{S \not\sim Z} f^{\text{@}}[^{\land}(PrS) + \log^{\land}(PrS)] \; ; \; T(s) + {\text{@}} \log^{+} T(s)g + C_{\text{@}}$$

and

$$J(Z;_{\mathfrak{B}})$$
, $\inf_{S \not\sim Z} f^{\mathfrak{B}}[^{\wedge}(PrS); \log^{\wedge}(PrS)]; T(s)g; C_{\mathfrak{B}}$

where $C_{\emptyset} > 0$ depends only on \emptyset ; and the in ma are taken over all nite subsets S of Z:

COROLLARY 3.1 For a sequence Z such that 0 is not in Z; de ne

$$D^{+}(Z) = \inf fm : \inf_{S \not \searrow Z} (m \land (PrS)_{i} T(s)) > i 1g:$$

Then $D^+(Z)$ · ® is necessary and $D^+(Z)$ < ® is $su\pm cient$ for Z to be an A^{i} ® zero set.

Note that for other spaces $A^{< k>}$ such that k has faster than logarithmic growth, a similar description of zero sets is not known.

4 Problem (B) for $A^{< k>}$

THEOREM 4.1

$$J(E;';k) \cdot \sum_{E}^{\mathbb{Z}} \max_{F} f \log '(^{3}); \log pgdm(^{3}); (\log p) \frac{@}{1; @} (1; jEj)$$

$$+ (\frac{L}{@})^{\log_{2} C} Entr_{k}(E)$$

where $0 , <math>0 < ^{@} \cdot \frac{1}{2}$ are arbitrary, C is the constant in (3), L is an absolute constant, and $Entr_{k}(E)$ is the k-entropy of E, de^{-} ned as follows:

$$Entr_k(E) = \sum_{n=1, j \mid J_n j}^{X} k(t) dt$$

where fI_ng are the complementary arcs of E:

Special cases: (1) E = @D: Letting $p! 0^+$; we get

$$J(@D;';k) \cdot \sum_{@D}^{Z} \log'(^{3}) dm(^{3})$$

which is the classical Jensen's inequality (in fact, equality.)

(2) If $0 \cdot '(^3) \cdot 1$ on E and $p = \max_{^3 2E} '(^3)$; we obtain

$$J(E;';k) \cdot (\log p) \frac{jEj_i^{\otimes}}{1_i^{\otimes}} + (\frac{L}{\mathscr{E}})^{\log_2 C} Entr_k(E):$$

Choosing @ = jEj=2; we get

$$J(E;';k) \cdot \frac{1}{2}(\log p)jEj + (\frac{2L}{jEj})^{\log_2 C} Entr_k(E):$$

(3) If p = 1 and $@ = \frac{1}{2}$; then

$$J(E;';k) \cdot \int_{E}^{L} \log^{+}(3) dm(3) + (2L)^{\log_2 C} Entr_k(E)$$
:

Proof: Write

$$@D_{i} E = \begin{bmatrix} I_{n} \\ I_{n} \end{bmatrix}$$

where the I_n are open disjoint arcs on the unit circle. Call a_n and b_n the endpoints of I_n : Let $0 < ^{@} \cdot \frac{1}{2}$: Let $^{o}_n$ be the open arc of the circle inside the unit disk passing through a_n and b_n and forming an angle of $^{@}$ (we will think of it as the normalized angle $^{@}$) with the arc I_n : Let $_{i} = ^{C} \cdot ^{O}_{n}$: $_{i} \in E$ forms the boundary of an open subset – of the unit disk containing the origin. For the proof, we construct three functions U_1 : U_2 : and V as follows. Step 1: Construction of U_1 and U_2 :

De⁻ne

$$U_1(z) = \sum_{E}^{Z} Re(\frac{3+Z}{3+Z}) dm(3)$$
:

 U_1 is the harmonic measure of E with respect to **D**:

LEMMA 4.1

$$\lim_{r \downarrow 1^{-}} U_1(r^3) = \hat{A}_E(^3)$$
 a:e: on @D

where \hat{A}_E is the characteristic function of E: In addition, $U_1(z)$ · ® for $z \; 2_i$:

Assume $Entr_k(E)$ is -nite and de-ne the following harmonic function

$$V(z) = \int_{\mathbb{Q}\mathbf{D}} z^{2}$$

By relabeling L; we get the statement of the lemma. 2 Step 3: Construction of H and application of the maximum principle. Finally, let us de^-ne

$$H(z) = U_2(z)_i (\log p) \frac{@}{1_i @} (1_i U_1(z)) + (^L$$