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Note that, given the inner product (1.1), multiplication by z and difierentiation
are adjoint operators (at least formally): that is, for any polynomials p and q;

(1.4) hzp(z); q(z)i = hp(z); q0(z)i:
In fact, if we deflne an inner product as in (1.1) where e¡jzj2 is replaced by any
continuous, radial weight !(z) and require multiplication by z and difierentiation
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Deflnition 2.2. Given an entire function f of flnite order ‰; the type ¾ of the
function is deflned to be

¾ := lim sup
r!1

ln Mf (r)n
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an entire function can be computed from its Taylor coe–cients (see, for example,
[14]). More speciflcally, an entire function

P1
n=0 anzn has order

‰ = lim sup
n!1

n ln n

ln 1
janj

and type

¾ =
1

e‰
lim sup

n!1
njanj‰=n:

Notice that since the function f in (2.2) is in the Fock space F 2; f has order less
than or equal to 2: On the other hand,

‰ = lim sup
n!1

n ln(n)

ln(n
p

n!)
‚ lim sup

n!1

n ln(n)

ln(n) + 1
2
n ln(n)

= 2:

Therefore, f has order 2: In addition,

¾ =
1

2 e
lim sup

n!1
n

flflflfl
1

n
p

n!

flflflfl
2
n

=
1

2
:

Notice that multiplying an entire function by z does not change its order or type.
In particular, zf(z) is a function of order 2 and type 1=2: However, zf(z) is not
in the Fock space, since

kzf(z)k2
2 =

1X
n=1

(n + 1)!

n2 n!
=

1X
n=1

n + 1

n2
= 1:

This example simultaneously shows that the Fock space cannot be deflned simply
in terms of order and type and that multiplication by z is not well-deflned on
the Fock space. (In fact, multiplication by z on the Fock space is one of the
interesting examples of unbounded subnormal operators; see the introduction in
[12] and the given references therein.)

One could also consider a simpler example, namely,

f(z) =
sin((1=2)z2)

z2
;

which is clearly an entire function of order 2 and type 1=2: When jzj = r gets

large, jf(z)j2 grows like er2

r4 ; which implies
R 2…

0

R 1
0

jf(reiµ)j2e¡r2
r dr dµ < 1; so

that f 2 F 2: On the other hand, zf(z) is not in F 2: Indeed, this follows easily
from the fact that when jzj = r gets large,

jzf(z)j2e¡r2

r » 1

r
:

The above discussion shows that, from a certain point of view, the interesting
functions in the Fock space are the ones of order 2 and type 1=2: In fact, these
Fock space functions have inflnitely many zeros, which we now prove.

Proposition 2.4. A function in the Fock space of order 2 and type 1=2 must
have inflnitely many zeros.
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Proof. By the Hadamard factorization theorem, an entire function f of order 2
and type 1=2 with flnitely many zeros has the form

f(z) = P (z)eaz+(1=2)z2

;

where P is a polynomial, and a is a constant. ThenZ

C
jf(z)j2 e¡jzj2 dA(z) =

1

…

ZZ

R2

jP (z)j2e2Re(a)x e¡2
¡

Im(a)y+y2
¢

dx dy:

Since P is a polynomial, there are positive constants C and R such that jP (z)j ‚
C for jzj ‚ R: It follows that

Z

C
jf(z)j2 e¡jzj2 dA(z) ‚ C2

…

µZ

Rn[¡R;R]

e2Re(a)x dx

¶
¢
µZ

R
e¡2

¡
Im(a)y+y2

¢
dy

¶
:

Clearly, the flrst integral in the right side of the above inequality diverges while
the second integral converges. Therefore f cannot be in the Fock space.

¤

3. An Extremal Problem

Inspired by results in the theory of invariant subspaces of the Bergman space Ap

which began with the seminal paper of Hedenmalm [10] for p = 2; were extended
by Duren, Khavinson, Shapiro, and Sundberg in [4, 5] for p 6= 2; were developed
by many others, and have now appeared in two books [6, 11], we investigate here
the extremal function for a zero-based subspace of the Fock space F 2 associated
with a flnite zero set.

Note that in the Hardy and Bergman spaces, extremal functions come up nat-
urally in connection with closed z-invariant subspaces, that is, closed subspaces
M such that zM ‰ M: In the Fock space setting however, if M is a non-trivial
closed subspace of F 2 and f 2 F 2 satisfles fM ‰ M; then one can show that
f must be a bounded function, and being entire, must thus be a constant. (See
[9] for a more detailed discussion.) In particular, there are no closed z-invariant
subspaces of the Fock space other than the trivial space. However, one can still
examine the extremal functions.

Generally, if N is any closed subspace of F 2; we consider the problem of max-
imizing jf(0)j among all f 2 N with kfk2 = 1: (For convenience, we make the
standing assumption that there is a function f 2 N with f(0) 6= 0; otherwise,
we maximize a suitable derivative at the origin.) A function f which achieves
this maximum is called an extremal function for N: As in the Bergman space
theory (see [11, Prop 3.5]), one can show that such an extremal function exists,
belongs to N; and is unique up to rotation by a unimodular constant. Hence-
forth, GN will denote the unique extremal function for N with the property that
GN(0) > 0:

An extremal function GN can be described in terms of the reproducing kernel
for N:
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Hilbert space with reproducing kernel K(z; w) = e „wz: In other words, K(¢ ; w)
is a function in F 2 which satisfles f(w) = hf; K(¢ ; w)i for all f 2 F 2 and all
w 2 C: We remark that the existence (and uniqueness) of the kernel function
follow from the Riesz representation theorem and the inequality (2.1), which
shows that point evaluation is a bounded linear functional on F 2: The explicit
formula for the kernel follows from the fact that the functions en in (1.2) form
an orthonormal basis for F 2: (We omit the details.)

A closed subspace N of F 2 has its own reproducing kernel KN(z; w): Indeed,
KN(¢ ; w) is the orthogonal projection of K(¢ ; w) onto N; for each w 2 C: Using
an argument similar to the one for the Bergman space, one can easily show that

(3.1) GN(z) =
KN(z; 0)p
KN(0; 0)

:

For our setting, we will only consider subspaces N of F 2 associated with a flnite
zero set. Indeed, if A = fa1; a2; : : : ; ang is a flnite set of distinct non-zero points
in C; let

NA = ff 2 F 2 : f(aj) = 0; 1 • j • ng:

In what follows, for notational simplicity, the kernel function KNA
and the ex-

tremal function GNA
will be abbreviated KA and GA respectively.

Proposition 3.1. Let A = fa1; a2; : : : ; ang be a set of distinct non{zero points in
C: Then the extremal function GA for the zero-based subspace NA has inflnitely
many zeros.

Proof. By considering a certain dual problem and using the reproducing prop-
erty of kernels (see, e.g., [6, p. 14, 120]), it can be shown that GA is a linear
combination of the kernels K(z; 0) = 1 and K(z; ak) = eakz for k = 1; : : : ; n:
Thus, there are constants c0; : : : ; cn such that

(3.2) GA(z) = c0 +
nX

k=1

c
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Corollary 3.3. If a 6= 0; then the single point extremal function is given by

Gfag(z) =
1 ¡ ea(z¡a)

p
1 ¡ e¡jaj2 :

Proof. Combine (3.7) with (3.1). ¤

In the remainder of this section, we present some results about the zeros of these
extremal functions. First of all, it follows easily from Corollary 3.3 that that the
zeros of the single point extremal functions Gfag are given by zk = a + 2…ik=a;
where k is an integer. For the two point extremal functions Gfa;bg; the situation
is more complicated. We start with a basic lemma. Recall that Q denotes the
set of rational numbers.

Lemma 3.4. Suppose a; b are two distinct complex numbers such that b
a

= r
belongs to Q n f0g; and let

(3.8) A = ejaj2 ; fi =
Ar2 ¡ Ar

Ar ¡ A
; and fl =

Ar2+1 ¡ A2r

Ar ¡ A
:

(a) If r = q
p
; where q > p > 0 and p and q are relatively prime, then z is a

solution to Gfa;bg(z) = 0 if and only if

(3.9) wq ¡ fiwp + fl = 0;

where w = e„az=p: Moreover, the polynomial equation (3.9) has exactly q
distinct solutions.

(b) If r = ¡ q
p
; where q ‚ p > 0 and p and q are relatively prime, then z is a

solution to Gfa;bg(z) = 0 if and only if

(3.10) wp+q + flwp ¡ fi = 0;

where w = e¡„az=p: Moreover, the polynomial equation (3.10) has exactly
p + q distinct solutions.

Proof. From Proposition 3.2, we have Gfa;bg(z) = 0 if and only if
‡

ejaj2 ¡ eza
· ‡

e(r2+1)jaj2 ¡ e2rjaj2
·

¡
‡

ezareja
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that any zero of (3.9) with multiplicity greater than one, if any, must be real,
and that the real zeros of (3.9) are distinct.

So let f(w) = wq ¡ fiwp + fl and assume that w0 is a zero of f with multiplicity
greater than one (clearly w0 6= 0). Thus, both f and f 0
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Theorem 3.5. Suppose a; b are distinct complex numbers such that b
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Then, by Lemma 3.4, w0 = eaz0=p is a root of the equation wq ¡ fiwp + fl = 0;
where fi and fl are as in (3.8). Notice that since j‚j = 1; the values of fi and
fl in (3.8) remain unchanged if a and b are replaced with ‚a and ‚b: Since

w0 = e‚a(‚z0)=p; it follows from Lemma 3.4 that ‚z0 is a zero of Gf‚a;‚bg: (Notice
that Lemma 3.4 can be applied in the case of the two points ‚a and ‚b; since
‚b=(‚a) = r = q=p 2 Q n f0g:) This proves the claim.

As a result of the claim, the number of distinct lines remains invariant if the
zeros are rotated. Thus, from now on, we will assume that a and b are real.

Next, we obtain the upper bound on n: Observe that since fi and fl are real, the
non-real roots of (3.9) must appear in conjugate pairs. We claim that if w0 and
w0 are conjugate roots of (3.9), then K¡1

¿ (w0) and K¡1
¿ (w0) are contained in the

same line perpendicular to the real axis. (Recall that ¿ = a=p:) Indeed, if z0

satisfles ez0 = w0; then ez0 = w0: By (3.13), points in K¡1
¿ (w0) all have the same

real part as z0; while points in K¡1
¿ (w0) all have the same real part as 0.48 w 387.04 -182.9 m 397.21 -182.9 l S BT/F5 11.95 Tf 387.04 55Since( z0) =
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the zeros of the extremal function. This implies in particular that there is no
hope for an isometric or contractive divisor as we have in a Hardy or Bergman
space situation (see also [23] for a discussion of this fact). Finally, by disturbing
the original zeros slightly, we completely change the structure of the zeros of
the extremal function, since the ratio of the two zeros can become real, or the
zeros may no longer lie on the same line through the origin, for example. We
do not know the exact structure of the zero set of the extremal function when
the ratio of the zeros is irrational or non-real. In that case, the transcendental
equation (3.11) can no longer be transformed into a polynomial equation. This
type of equation has been studied in [13], and it may be possible to extract
precise information in our setting from the results in that paper.

It should be mentioned that all upper bounds for n given by Theorem 3.5 can
be achieved. For instance, taking a = 1 and b = 4; one can show that
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Now, flx A > 0 and consider the extremal problem of flnding

(4.1) inffkfk2 : f(0) = 1; f 0(0) = A; f non-vanishing in Cg:

By a standard normal family argument and the Cauchy-Schwarz inequality, it is
easy to show that the extremal function f⁄ exists and is unique. (See, for example,
[1] for the same argument in Bergman spaces.) The interpolating conditions

immediately imply that c = 0 and therefore f⁄ has the form f⁄(z) = eaz2+Az;
where jaj < 1=2:

Lemma 4.1. The Maclaurin series for the extremal function f⁄ has real coe–-
cients. Consequently, the constant a in the factorization of f⁄ must be real.

Proof. Notice that the function f⁄(„z) is entire, has the same norm as f⁄
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Putting both calculations together gives

kfk2
2 =

1

…

p
…p

2a + 1
exp

µ
A2

1 ¡ 2a

¶ p
…p

1 ¡ 2a
=

exp (A2= (1 ¡ 2a))p
1 ¡ 4a2

:

Therefore, to solve Problem (4.1), we need to flnd a which minimizes the function

g(a) :=
exp (A2=(1 ¡ 2a))p

1 ¡ 4a2

for ¡1
2

< a < 1
2
; where A > 0 is flxed. A direct calculation shows that

g0(a) = 2 exp

µ
A2

1 ¡ 2a

¶
1

(1 ¡ 4a2)3=2(1 ¡ 2a)
(¡4a2 + 2(A2 + 1)a + A2)TJ/F4 11.95 Tf 8.8 0 TD[(+)rt calc[(4)]TJ/F5 135 11.95 T.27(g)]T21hows that
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